Canonical connections on paracontact manifolds

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On (k, μ)-Paracontact Metric Manifolds

The object of this paper is to study (k, μ)-paracontact metric manifolds with qusi-conformal curvature tensor. It has been shown that, h-quasi conformally semi-symmetric and φ-quasi-conformally semi-symmetric (k, μ)-paracontact metric manifold with k 6= −1 cannot be an η-Einstein manifold.

متن کامل

On Para-sasakian Manifolds Satisfying Certain Curvature Conditions with Canonical Paracontact Connection

In this article, the aim is to introduce a para-Sasakian manifold with a canonical paracontact connection. It is shown that φ−conharmonically flat , φ−W2 flat and φ−pseudo projectively flat para-Sasakian manifolds with respect to canonical paracontact connection are all η−Einstein manifolds. Also, we prove that quasi-pseudo projectively flat para-Sasakian manifolds are of constant scalar curvat...

متن کامل

Indefinite Almost Paracontact Metric Manifolds

In this paper we introduce the concept of (ε)-almost paracontact manifolds, and in particular, of (ε)-para Sasakian manifolds. Several examples are presented. Some typical identities for curvature tensor and Ricci tensor of (ε)-para Sasakian manifolds are obtained. We prove that if a semi-Riemannian manifold is one of flat, proper recurrent or proper Ricci-recurrent, then it can not admit an (ε...

متن کامل

Special connections in almost paracontact metric geometry

‎Two types of properties for linear connections (natural and almost paracontact metric) are discussed in almost paracontact metric geometry with respect to four linear connections‎: ‎Levi-Civita‎, ‎canonical (Zamkovoy)‎, ‎Golab and generalized dual‎. ‎Their relationship is also analyzed with a special view towards their curvature‎. ‎The particular case of an almost paracosymplectic manifold giv...

متن کامل

Connections on Metriplectic Manifolds

In this note we discuss conditions under which a linear connection on a manifold equipped with both a symmetric (Riemannian) and a skew-symmetric (almost-symplectic or Poisson) tensor field will preserve both structures. If (M, g) is a (pseudo-)Riemannian manifold, then classical results due to T. Levi-Civita, H. Weyl and E. Cartan [7] show that for any (1, 2) tensor field T i jk which is skew-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of Global Analysis and Geometry

سال: 2008

ISSN: 0232-704X,1572-9060

DOI: 10.1007/s10455-008-9147-3